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ABSTRACT 
We consider the mathematical formulation of time varying wireless networks, where the users of the networks are 

in relative motion. We showed that in this case if the solution for the power of the system exist, the solution is 

uniformly asymptotically stable. It is also showed that the stability is global this means that for all initial conditions 

have same asymptotic behavior.         
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INTRODUCTION 

If, for the 𝑛 −th order differential equation   
𝑑𝑛𝑥

𝑑𝑡𝑛 = 𝐹 (𝑥,
𝑑𝑥

𝑑𝑡
, … ,

𝑑𝑛−1𝑥

𝑑𝑡𝑛−1 ; 𝑡)    (1) we define the new set of variables 

𝑥1  =  𝑥, 𝑥2  =  
𝑑𝑥

𝑑𝑡
, . . . , 𝑥𝑛  =

𝑑𝑛−1𝑥

𝑑𝑡𝑛−1   then the one 𝑛 −th order differential equation with independent variable 𝑡 and 

one dependent variable 𝑥 can be replaced by the system 
𝑑𝑥1

𝑑𝑡
  = x2(t) 

𝑑𝑥2

𝑑𝑡
  = x3(t) 

                                                                ⋮                                                                            (2) 
𝑑𝑥𝑛−1

𝑑𝑡
  = xn(t) 

                    
𝑑𝑥𝑛

𝑑𝑡
  =  𝐹 (𝑥1 , 𝑥2 , … , 𝑥𝑛, 𝑡) 

of 𝑛 first-order equations with independent variable 𝑡 and 𝑛 dependent variables 𝑥1, . . . , 𝑥𝑛. In fact this is just a 

special case of 

 
𝑑𝑥1

𝑑𝑡
  =   𝐹 (𝑥1 , 𝑥2 , … , 𝑥𝑛, 𝑡) 

𝑑𝑥2

𝑑𝑡
  =   𝐹2 (𝑥1 , 𝑥2 , … , 𝑥𝑛 , 𝑡) 

                                                   ⋮                                                                                ( 3) 

        
𝑑𝑥𝑛−1

𝑑𝑡
=   𝐹𝑛−1 (𝑥1 , 𝑥2 , … , 𝑥𝑛, 𝑡) 

𝑑𝑥𝑛

𝑑𝑡
  =   𝐹𝑛 (𝑥1 , 𝑥2 , … , 𝑥𝑛 , 𝑡) 

 

where the right-hand sides of all the equations are now functions of the variables 𝑥1 , 𝑥2 , … , 𝑥𝑛. The system 

defined by (3) is called an 𝑛 −th order dynamical system. Such a system is said to be autonomous if none of the 

functions Fe is an explicit function of t. 

 

Picard’s theorem generalizes in the natural way to this n-variable case as does also the procedure for obtained 

approximations to a solution with Picard iterates. That is, with the initial condition 𝑥(𝜏)  =  𝜉𝑒, =  1, 2, . . . , 𝑛, we 

define the set of sequences {𝑋𝑒
(𝑗)

(t)} , e = 1 , 2, …………. n with 

𝑋𝑒
(0)

 (t) = ξe. 

𝑋𝑒
(𝑗+1)

 (t) = ξe + ∫ 𝐹𝑒 (𝑋𝑒
(𝑗)𝑡

𝑇
(u) ,…………, 𝑋𝑛

(𝑗)
 (u); u) du,    j = 1, 2 …. 

For all e = 1, 2, …….., n 
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Example1: Consider the simple harmonic differential equation �̈�(t) = −𝜔2x(t)                                                                                           

with the initial conditions x(0) = 0 and �̇�(0) = 𝜔. This equation is equivalent to the system 

�̇�1(t) = x2(t), �̇�2(t) = −𝜔2x1(t),                                                                   

𝑥1(0)  =  0, 𝑥2(0)  =  𝜔 
which is a second-order autonomous system. From (3) 

𝑋1
(0)

 (t)  = 0,                                               𝑋1
(0)

 (t)  = 𝜔, 

𝑋1
(1)

 (t)  = 0 +  ∫ 𝜔𝑑𝑢,
𝑡

0
                              𝑋2

(1)
 (t)  = 𝜔  +   ∫ 𝑜𝑑𝑢,

𝑡

0
   

             = 𝜔t,                                                          =  𝜔, 

𝑋1
(2)

 (t)  = 0 +  ∫ 𝜔𝑑𝑢,
𝑡

0
                              𝑋2

(2)
 (t)  = 𝜔 +  ∫ 𝜔3𝑢𝑑𝑢,

𝑡

0
                

             = 𝜔t,                                                            =  𝜔 {1 − 
(𝜔𝑡)2

2!
}. 

𝑋1
(3)

 (t)  = 0 +  ∫ 𝜔{1 − 
(𝜔𝑡)2

2!
}𝑑𝑢,

𝑡

0
            𝑋2

(3)
 (t)  = 𝜔 -  ∫ 𝜔3𝑢𝑑𝑢,

𝑡

0
 

             = 𝜔𝑡  -  
(𝜔𝑡)3

3!
  ,                                            =  𝜔 {

(𝜔𝑡)2

2!
}. 

 

The pattern which is emerging is clear 

x1
(2j−1) (t)  = x1

(2j) (t)         =  𝜔t - 
(𝜔𝑡)3

3!
  + ….. + (-1)j + 1 

(𝜔𝑡)(2𝑗−1)

(2𝑗−1)!
   

                                                              = 1 , 2, ………….                 

𝑋2
(2𝑗)

 (t) = x1
(2j + 1)(t)  =  𝜔 {1 − 

(𝜔𝑡)2

2!
+  … . +(−1)𝑗  

(𝜔𝑡)(2𝑗)

(2𝑗)!
} 

 

STABILITY THEORY 
In mathematics, stability theory addresses the stability of solutions of differential equations and of trajectories of 

dynamical systems under small perturbations of initial conditions. The heat equation, for example, 

Definition (1): 

Let �̇� = 𝑓(𝑥, 𝑡)                                                                                                          (4) 

 is a system of ODE, 𝑥 =  𝑋(𝑡)it is a solution is said to be: 

• stable if, given any 𝜖 >  0 and any 𝑡0  ≥  0, there exists a 𝛿 =  𝛿(, 𝑡0) such that |𝑥(𝑡0)  −  𝑋(𝑡0)|  <  𝛿 ⇒
 |𝑥(𝑡)  −  𝑋(𝑡)|  < 𝜖 , ∀ 𝑡 ≥  𝑡0 ≥  0,                                        (5) 

for any solution x(t) of (1), 

• uniformly stable if, for every 𝜖 >  0, there exits 𝛿 =  𝛿(𝜖), independent of 𝑡0, such that (5) is satisfied forall 

𝑡0  ≥  0, 

• unstable if it is not stable, 

• asymptotically stable if it is stable and for any𝑡0 ≥  0 there exists a positive constant 𝑐 =  𝑐(𝑡0) such that 

|𝑥(𝑡0)  −  𝑋(𝑡0)|  <  𝑐 ⇒  𝑥(𝑡)  −  𝑋(𝑡)  →  0 𝑎𝑠 𝑡 → ∞, 
for any solution 𝑥(𝑡) of (4), 

• uniformly asymptotically stable if it is uniformly stable and there exists a positive constant c, independent 

of𝑡0, such that, for every 𝜂 >  0, there exists 𝑇 =  𝑇(𝜂)  >  0 such that, for all 𝑡0 ≥  0 

|𝑥(𝑡0)  −  𝑋(𝑡0)|  <  𝑐 ⇒  |𝑥(𝑡)  −  𝑋(𝑡)|  < 𝜂, ∀ 𝑡 ≥ 𝑡0  +  𝑇(𝜂), 
for any solution x(t) of (1), 

• globally uniformly asymptotically stable if it is uniformly stable with 𝛿(𝜖) satisfying lim
𝜖→∞

𝛿(𝜖)   =  ∞, 

and,for all positive 𝜂 and 𝑐, there exists 

𝑇 =  𝑇(𝜂, 𝑐)  > 0 such that, for all 𝑡0  ≥  0 

|𝑥(𝑡0)  −  𝑋(𝑡0)|  <  𝑐 ⇒  |𝑥(𝑡)  −  𝑋(𝑡)|  <  𝜂, ∀ 𝑡 ≥  𝑡0 +  𝑇(𝜂, 𝑐), 
for any solution 𝑥(𝑡) of (4). 

 

LYAPUNOV STABILITY THEORY 
Various types of stability may be discussed for the solutions of differential equations or difference equations 

describing dynamical systems. The most important type is that concerning the stability of solutions near to a point 

of equilibrium. This may be discussed by the theory of Lyapunov. In simple terms, if the solutions that start out 

near an equilibrium point 𝑥𝑖stay near 𝑥𝑖forever, then𝑥𝑖is Ly]apunov stable. More strongly, if 𝑥𝑖is Lyapunov stable 

and all solutions that ‘start out near 𝑥𝑖converge to 𝑥𝑖, then 𝑥𝑖is asymptotically stable. The notion of exponential 

stability guarantees a minimal rate of decay, i.e., an estimate of how quickly the solutions converge. The idea of 

Lyapunov stability can be extended to infinite-dimensional manifolds, where it is known as structural stability, 
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which concerns the behavior of different but "nearby" solutions to differential equations. Input-to-state stability 

(ISS) applies Lyapunov notions to systems with inputs 

 

linear time invariant system (LTI): 

The simplest form of system �̇� = 𝑓(𝑡, 𝑥) is linear , time invariant system  

�̇� = 𝐴𝑥                                                                            (6) 

Where 𝐴 is a constant, 𝑛 × 𝑛 matrix ,the system then takes the form of a homogenous first order ODE, and, 

therefore, may be solved explicitly. The solution of (6). With initial state 𝑥(0)  =  𝑥0, isgiven by𝑥(𝑡)  =
 𝑒𝑥𝑝(𝐴𝑡)𝑥0 

 

Nonlinear autonomous systems: 
A natural next step in the analysis of systems of the form (4) is to continue to require that the right-hand side have 

no explicit time-dependence, but to allow f to be a more general nonlinear functional 

                            �̇�  =  𝑓(𝑥)                                                                                                (7) 

 

Lyapunov’s Direct Method: 

Let 𝑉 ∶  𝐷 →  𝑅 be a continuously differentiable function defined on the 

domain 𝐷 ⊂  𝑅n that contains the origin. The rate of change of 𝑉 along the 

trajectories of (4) is given by 

�̇�(𝑥) =
𝑑

𝑑𝑥
𝑉(𝑥) = ∑

𝜕𝑉

𝜕𝑥𝑖

𝑑

𝑑𝑡
𝑥𝑖

𝑛
𝑖=1 = [

𝜕𝑉

𝜕𝑥1

𝜕𝑉

𝜕𝑥2
…

𝜕𝑉

𝜕𝑥𝑛
] �̇� =

𝜕𝑉

𝜕𝑥
𝑓(𝑥)              (8) 

 

The main idea of Lyapunov’s theory is that if �̇�(𝑥) is negative along thetrajectories of the system, then 𝑉 (𝑥) will 

decrease as time goes forward.Moreover, we do not really need to solve the nonlinear ODE (1) for everyinitial 

condition, but we just need some information about the drift 𝑓(𝑥). 
Example2: 

Consider the nonlinear system  �̇� = 𝑓(𝑥) = [
𝑓1(𝑥)
𝑓2(𝑥)

] = [
−𝑥1 + 2𝑥1

2𝑥2

−𝑥2
] candidate Lypaunov function  

𝑉(𝑥)=𝜆1𝑥1
2 + 𝜆2𝑥2

2 , with 𝜆1, 𝜆2> 0. If we plot the function 𝑉 (𝑥) for some choice of λ’s This function has a unique 

minimum over allthe state space at the origin. Moreover, 𝑉 (𝑥)  →  ∞ as 𝑘 × 𝑘 →  ∞ .Calculate the derivative of 

V along the trajectories of the system 

𝑉 (𝑥)  =  2𝜆1𝑥 1 ( − 𝑥 1  +  2𝑥1
2𝑥2  )  +  2𝜆 2 𝑥2  ( − 𝑥 2 )  =  − 2𝜆1𝑥1 

2  

− 2𝜆2 𝑥 2 
2 +  4𝜆 1𝑥1

3𝑥2 

Theorem (1) : let theorigin 𝑥 = 0 ∈ 𝐷 ⊂ ℝ𝑛be an equilibrium point for �̇� = 𝑓(𝑥). Let 𝑉: 𝐷 → ℝbe a continues 

differentiable function such that  𝑉(0) = 0 and 𝑉(𝑥) > 0, 𝑥 ∈ 𝐷 ∖ {0} 

                             �̇�(𝑥) ≤ 0  ∀𝑥 ∈ 𝐷                                                                                 (9) 

Then 𝑥 = 0 is stable. Moreover, if  �̇�(𝑥) < 0  ∀𝑥 ∈ 𝐷 ∖ {0} Then 𝑥 = 0 asymptotically stable. 

Remark 1 If 𝑉(𝑥) > 0, ∀𝑥 ∈  𝐷 ∖ {0}, then 𝑉is called locally positive definite. If 𝑉(𝑥) > 0, ∀𝑥 ∈  𝐷 ∖ {0},then 

𝑉is called a Lyapunov function for the system �̇� = 𝑓(𝑥). 
 

Stability of nonautonomous Systems: 
Consider the nonlinear autonomous system 

                                 �̇� = 𝑓(𝑥)                                                                                           (10) 

Where 𝑓: 𝐷 → 𝑅𝑛,the domain D⊆ 𝑅𝑛to𝑅𝑛 sippose the system (10) has an equilibrium point �̅�𝜖 ∈ 𝐷 ,i.e., 𝑓(�̅�) if 

the equilibrium point �̅� is stable.In the sequel, we assume that �̅�is the origin of state space. This can bedone 

without any loss of generality since we can always apply a change ofvariables to 𝜉 =  𝑥 − �̅�to obtain 

𝜉̇ = 𝑓(𝜉 + �̅�) 

and then study the stability of the new system with respect to 𝜉 =  0, the origin. We have the following two types 

of stability. 

Definition (2) :The equilibrium point 𝑥 = 0 of (10) is 

1. Stable, if for each 𝜖 > 0 there exist 𝛿 > 0 such that 
‖𝑥(𝑡0)‖ < 𝛿 ⟹ ‖𝑥(𝑡)‖ < 𝜖,     ∀𝑡 > 𝑡0                                                                (11) 

2. asymptotically stable, if it is stable and in addition δ can be chosen such that 

‖𝑥(𝑡0)‖ < 𝛿 ⟹ lim
𝑡→∞

‖𝑥(𝑡)‖ = 0,                                                                     (12)  

Therefore, if 𝑉(𝑥)̇ is negative, 𝑉 will decrease along the solution of 𝑥 ̇ =  𝑓 (𝑥). We are now ready to state 

Lyapunov’s stability theorem. 

http://www.ijesrt.com/
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Lyapunov’s Indirect Method: 

We prove stability of the system by considering the properties of the linearization of the system. Before proving 

the main result, we require an intermediate result. 

Definition (3):   A matrix 𝐴 ∈ ℝ𝑛×nis called Hurwitz or asymptotically stable, if and only if𝑅𝑒(𝜆 𝑖 )  <  0, ∀ 𝑖 =
 1, 2,··· , 𝑛where 𝜆 𝑖’𝑠 are the eigenvalues of the matrix 𝐹. Consider the system �̇�  =  𝐴𝑥. We look for a quadratic 

function𝑉 (𝑥) =  𝑥𝑇  𝑃𝑥where 𝑃 =  𝑃𝑇 > 0. Then 

�̇� (𝑥)  = �̇�𝑇  𝑃𝑥 + 𝑥𝑇  𝑃�̇�  =  𝑥 𝑇  (𝐴 𝑇 𝑃 +  𝑃𝐴 𝑥)  =  − 𝑥𝑇𝑄𝑥 

If there exists 𝑄 = 𝑄 𝑇 >  0 such that 𝐴𝑇  𝑃 +  𝑃𝐴 =  − 𝑄, then 𝑉 is a Lyapunov function and 𝑥 =  0 is globally 

stable. This equationis called the Matrix Lyapunov Equation. 

Theorem (2): For 𝐴 ∈ ℝ𝑛×𝑛 the following  statement are equivalents  

1. 𝐴 is Hurwitz 

2. For all 𝑄 = 𝑄 𝑇 >  0 there exist unique 𝑃 =  𝑃𝑇 > 0 satisfying the Lyapunov Equation. 𝐴𝑇  𝑃 +
 𝑃𝐴 =  − 𝑄, 

 

DEFINITION OF DELAY DIFFERENTIAL EQUATIONS: 
The general form of DDE system to be considered is then  

                            �̇�(𝑡) = 𝑓(𝑡, 𝑥𝑡)                                                                            (13) 

Where 𝑥: ℝ → ℝ𝑁 , 𝑓: ℝ × ∁→ ℝ𝑁 , 𝑥 is a solution of (10)on [𝑡0 − 𝑟, 𝑡0 + 𝐴] for some 𝐴 > 0 with initial condition 

∅ ∈ ∁ if𝑥 ∈ ∁([𝑡0 − 𝑟, 𝑡0 + 𝐴], ℝ𝑁 , )𝑥(𝑡)statisfies (13) for 𝑡 ∈ [𝑡0, 𝑡0 + 𝐴]and 𝑥0 = ∅ 0𝑛[−𝑟, 0]. 
Definition (4): the solution 𝑥 = 𝑋(𝑡)of (10) is said to be  

 stable if, given any  𝜖 > 0 and any 𝑡0 ∈ ℝthere exist  𝑎 𝛿 = 𝛿(𝜖, 𝑡0) such that  

‖𝑥𝑡0
− 𝑋𝑡0

‖ < 𝛿 ⇒ |𝑥(𝑡) − 𝑋(𝑡)| < 𝜖, ∀𝑡 ≥ 𝑡0    (14) 

for any solution 𝑥(𝑡)of (13), 

 uniformly stable if, for every 𝜖 > 0,there exist 𝛿 = 𝛿(𝜖), independent of 𝑡0, such that (14) is satisfied for 

all 𝑡0 ∈ ℝ. 
 unstable if it is not stable. 

 asymptotically stable if it is stable and for any 𝑡0 ∈ ℝ there exist a positive constant  𝑐 = 𝑐(𝑡0) such that 

‖𝑥𝑡0
− 𝑋𝑡0

‖ < 𝑐 ⇒ 𝑥(𝑡) − 𝑋(𝑡) → 0 𝑎𝑠 𝑥 → 0for any solution 𝑥(𝑡) of (13). 

 uniformly asymptotically stable if it is uniformly stable and there exist a positive constant 𝑐, independent 

of 𝑡0, such that, for every 𝜂 > 0, there exist 𝑇 = 𝑇(𝜂) > 0 such that for all 𝑡0 ∈ ℝ 

‖𝑥𝑡0
− 𝑋𝑡0

‖ < 𝑐 ⇒ |𝑥(𝑡) − 𝑋(𝑡)| < 𝜂, ∀𝑡 > 𝑡0 + 𝑇(𝜂) 

for any solution 𝑥(𝑡) of  (13). 

 globally uniformly asymptotically stable if it is uniformly stable with 𝛿(𝜖) satisfying lim
𝜖→∞

𝛿(𝜖) = ∞,and 

for all positive 𝜂 and 𝑐,there exist 𝑇 = 𝑇(𝜂, 𝑐) > 0 such that, for all 𝑡0  ∈ ℝ 

‖𝑥𝑡0
− 𝑋𝑡0

‖ < 𝑐 ⇒ |𝑥(𝑡) − 𝑋(𝑡)| < 𝜂, ∀𝑡 > 𝑡0 + 𝑇(𝜂, 𝑐), 

for any solution 𝑥(𝑡)of (13), 

 

Stability of delay differential equations 

Delay differential equations (DDEs) are a type of differential equation in which the derivative of the unknown 

function at a certain time is given in terms of the values of the function at previous times. DDEs are also called 

time-delay systems, systems with aftereffect or dead-time, hereditary systems, equations with deviating argument, 

or differential-difference equations. They belong to the class of systems with the functional state, i.e. partial 

differential equations (PDEs) which are infinite dimensional, as opposed to ordinary differential equations (ODEs) 

having a finite dimensional state vector. Four points may give a possible explanation of the popularity of DDEs.  

(1) Aftereffect is an applied problem: it is well known that, together with the increasing expectations of dynamic 

performances, engineers need their models to behave more like the real process. Many processes include 

aftereffect phenomena in their inner dynamics. In addition, actuators, sensors, communication networks that are 

now involved in feedback control loops introduce such delays. Finally, besides actual delays, time lags are 

frequently used to simplify very high order models. Then, the interest for DDEs keeps on growing in all scientific 

areas and, especially, in control engineering.  

 

(2) Delay systems are still resistant to many classical controllers: one could think that the simplest approach would 

consist in replacing them by some finite-dimensional approximations. Unfortunately, ignoring effects which are 

adequately represented by DDEs is not a general alternative: in the best situation (constant and known delays), it 
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leads to the same degree of complexity in the control design. In worst cases (time-varying delays, for instance), it 

is potentially disastrous in terms of stability and oscillations. 

 

(3) Delay properties are also surprising since several studies have shown that voluntary introduction of delays can 

also benefit the control. 

 

(4) In spite of their complexity, DDEs however often appear as simple infinite-dimensional models in the very 

complex area of partial differential equations 

 

Theorem (3) :(Razumikhin Theorem). Let 𝑥 =  0 be a solution of (10). Suppose that 𝑓 ∶  ℝ ×  𝐶 →  ℝ𝑛in (10) 

takes ℝ × (bounded sets in 𝐶) into bounded sets inℝ𝑛, and 𝑢, 𝑣, 𝑤 : ℝ̅+ → ℝ̅+ are continuous non-

decreasingfunctions, with𝑢(𝑠), 𝑣(𝑠)  >  0 for all 𝑠 >  0, 𝑢(0)  =  𝑣(0)  =  0 and 𝑣 strictly increasing. Suppose 

further thatthere exists a continuous function 𝑉 ∶  ℝ × ℝn →  ℝ such that: 

i. 𝑢(|𝑥|) ≤ 𝑉 (𝑡, 𝑥) ≤ 𝑣(|𝑥|), ∀ 𝑡 ∈ ℝ , ∀ 𝑥 ∈ ℝ𝑛 

ii.�̇�(𝑡, 𝑥(𝑡)) ≤  −𝑤(|𝑥(𝑡)|) 𝑖𝑓 𝑉 (𝑡 + 𝜃, 𝑥(𝑡 +  𝜃)) ≤ 𝑉 (𝑡, 𝑥(𝑡)) for 𝜃 ∈  [−𝑟, 0] where x(t) is any trajectory of 

(10). Then the solution x = 0 is uniformly stable. 

Theorem (4) (Razumikhin theorem for uniform asymptotic stability):Suppose that all assumption of theorem 6 

are satisfied and also 𝑤(𝑠) > 0 for 𝑠 > 0 that, in addition, there exists a continuous non-decreasing function  𝑞 : 

ℝ̅+ → ℝ̅+ satisfying 𝑞(𝑠) > 𝑠 for ll 𝑠 > 0such that 𝑖𝑖 can be strengthened to 

 �̇�(𝑡, 𝑥(𝑡)) ≤  −𝑤(|𝑥(𝑡)|) 𝑖𝑓 𝑉 (𝑡 + 𝜃, 𝑥(𝑡 +  𝜃)) ≤ 𝑞(𝑉(𝑡, 𝑥(𝑡)))                               (12)   

for 𝜃 ∈  [−𝑟, 0] where 𝑥(𝑡)is any trajectory of(10) then the solution 𝑥 = 0 is uniformly asymptotically stable. If 

further 𝑢(𝑠) → ∞as 𝑠 → ∞, then the solution 𝑥 = 0 is globally asymptotically stable. 

 

APPLICATION TO TIME VARYING WIRELESS NETWORKS (PROBLEM 

FORMULATION) 
We consider a wireless system consisting of 𝑁 users. Let the transmitted power from the antenna of user 𝑖 attime 𝑡 

be given by 𝑝i(𝑡), and defind 𝑝 =  (𝑝1, 𝑝2, . . . , 𝑝𝑁  )𝑇. Let the link gain between the transmitter of user 𝑗and the 

receiver of user 𝑖 be 𝐺𝑖𝑗 and the background noise in the power transmitted at user 𝑖 be 𝜈i. We maythen write the 

following expression for the effective interference at the receiver of user 𝑖, 

𝑅𝒊(𝑝) =
𝟏

𝐺𝑖𝑖

(∑ 𝐺𝑖𝑗𝑝𝑗 + 𝒗𝒊

𝒋≠𝒊

) 

we define the signal-to-interference-ratio (SIR) at user 𝑖 as Γ𝑖(𝑝) =
𝑝𝑖

𝑅𝑖(𝑝)
. The continuous form of the Foschini–

Miljanic algorithm 
𝑑𝑝𝑖(𝑡)

𝑑𝑡
=  𝑘𝑖(−𝑝𝑖(𝑡)  +  𝛾𝑖𝑅𝑖(𝑝)),                                      (13) 

where 𝑘i is a positive constant representing the aggressiveness of the feedback in the system and 𝛾iis a positive 

constant representing the target SIR value for node 𝑖. In particular, we consider the system 
𝑑𝑝𝑖(𝑡)

𝑑𝑡
=  𝑘𝑖(−𝑝𝑖(𝑡)  +  𝐼𝑖(𝑡, 𝑝))                                         (14) 

where 𝐼(𝑡, 𝑝)  =  (𝐼1(𝑡, 𝑝), 𝐼2(𝑡, 𝑝) . . . ,  𝐼𝑁 (𝑡, 𝑝))𝑇 is required to satisfy the following two properties, motivated by 

the properties of the original form of the interference term, at all times t for all p ≥ 0: 

i. Monotonicity: if 𝑝 ≥  𝑝,, then 𝐼(𝑡, 𝑝)  ≥  𝐼(𝑡, 𝑝,), 
ii. Scalability: there exists a continuous function 𝛿 ∶  (1, ∞)  →  𝑅+such that, for any 𝛼 >  1, 𝐼𝑖(𝑡, 𝑝) −
1

𝛼
𝐼𝑖(𝑡, 𝛼𝑝)  ≥  𝛿(𝛼) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈  {1, 2, . . . , 𝑁}. 

 

CONCLUSIONS 
We begin by studying (11) in the absence of delays, before introducing into the framework delays which may be 

heterogeneous and time-dependent. In particular, we show in the undelayed case that if a bounded solution 𝑝 =
𝑃(𝑡) exists then this is uniformly asymptotically stable. For the delayed case we show that if a solution 𝑝 =
 𝑃(𝑡)exists for which the delayed generalised nonlinearity I is bounded, then this is also uniformly 

asymptoticallystable. In both cases the stability is also shown to be global, i.e. for all initial conditions all solutions 

p(t) have the same asymptotic behavior. 
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